PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis

نویسندگان

  • Noriyuki Nishimura
  • Ali Sarkeshik
  • Kazumasa Nito
  • Sang-Youl Park
  • Angela Wang
  • Paulo C Carvalho
  • Stephen Lee
  • Daniel F Caddell
  • Sean R Cutler
  • Joanne Chory
  • John R Yates
  • Julian I Schroeder
چکیده

Abscisic acid (ABA) mediates resistance to abiotic stress and controls developmental processes in plants. The group-A PP2Cs, of which ABI1 is the prototypical member, are protein phosphatases that play critical roles as negative regulators very early in ABA signal transduction. Because redundancy is thought to limit the genetic dissection of early ABA signalling, to identify redundant and early ABA signalling proteins, we pursued a proteomics approach. We generated YFP-tagged ABI1 Arabidopsis expression lines and identified in vivo ABI1-interacting proteins by mass-spectrometric analyses of ABI1 complexes. Known ABA signalling components were isolated including SnRK2 protein kinases. We confirm previous studies in yeast and now show that ABI1 interacts with the ABA-signalling kinases OST1, SnRK2.2 and SnRK2.3 in plants. Interestingly, the most robust in planta ABI1-interacting proteins in all LC-MS/MS experiments were nine of the 14 PYR/PYL/RCAR proteins, which were recently reported as ABA-binding signal transduction proteins, providing evidence for in vivo PYR/PYL/RCAR interactions with ABI1 in Arabidopsis. ABI1-PYR1 interaction was stimulated within 5 min of ABA treatment in Arabidopsis. Interestingly, in contrast, PYR1 and SnRK2.3 co-immunoprecipitated equally well in the presence and absence of ABA. To investigate the biological relevance of the PYR/PYLs, we analysed pyr1/pyl1/pyl2/pyl4 quadruple mutant plants and found strong insensitivities in ABA-induced stomatal closure and ABA-inhibition of stomatal opening. These findings demonstrate that ABI1 can interact with several PYR/PYL/RCAR family members in Arabidopsis, that PYR1-ABI1 interaction is rapidly stimulated by ABA in Arabidopsis and indicate new SnRK2 kinase-PYR/PYL/RCAR interactions in an emerging model for PYR/PYL/RCAR-mediated ABA signalling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective inhibition of clade A phosphatases type 2C by PYR/PYL/RCAR abscisic acid receptors.

Clade A protein phosphatases type 2C (PP2Cs) are negative regulators of abscisic acid (ABA) signaling that are inhibited in an ABA-dependent manner by PYRABACTIN RESISTANCE1 (PYR1)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS (RCAR) intracellular receptors. We provide genetic evidence that a previously uncharacterized member of this PP2C family in Arabidopsis (Arabidopsis thaliana), A...

متن کامل

Overexpression of Poplar Pyrabactin Resistance-Like Abscisic Acid Receptors Promotes Abscisic Acid Sensitivity and Drought Resistance in Transgenic Arabidopsis

Drought stress is an important environmental factor limiting productivity of plants, especially fast growing species with high water consumption like poplar. Abscisic acid (ABA) is a phytohormone that positively regulates seed dormancy and drought resistance. The PYR1 (Pyrabactin Resistance 1)/ PYRL (PYR-Like)/ RCAR (Regulatory Component of ABA Receptor) (PYR/PYL/RCAR) ABA receptor family has b...

متن کامل

Structural insights into PYR/PYL/RCAR ABA receptors and PP2Cs.

Abscisic acid (ABA) plays an essential function in plant physiology since it is required for biotic and abiotic stress responses as well as control of plant growth and development. A new family of soluble ABA receptors, named PYR/PYL/RCAR, has emerged as ABA sensors able to inhibit the activity of specific protein phosphatases type-2C (PP2Cs) in an ABA-dependent manner. The structural and funct...

متن کامل

Omics Approaches Toward Defining the Comprehensive Abscisic Acid Signaling Network in Plants.

ABA is a plant hormone that plays crucial roles in controlling cellular and physiological responses to osmotic stress and in developmental processes. Endogenous ABA levels are increased in response to a decrease in water availability in cells, and ABA sensing and signaling are thought to be mediated according to the current model established in Arabidopsis thaliana, which involves pyrabactin re...

متن کامل

Molecular Basis of the Core Regulatory Network in ABA Responses: Sensing, Signaling and Transport

ABA is a major phytohormone that regulates a broad range of plant traits and is especially important for adaptation to environmental conditions. Our understanding of the molecular basis of ABA responses in plants improved dramatically in 2009 and 2010, banner years for ABA research. There are three major components; PYR/PYL/ RCAR (an ABA receptor), type 2C protein phosphatase (PP2C; a negative ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2010